West Virginia Web Scraping

West Virginia Data Scraping, Web Scraping Tennessee, Data Extraction Tennessee, Scraping Web Data, Website Data Scraping, Email Scraping Tennessee, Email Database, Data Scraping Services, Scraping Contact Information, Data Scrubbing

Friday, 30 December 2016

Data Mining and Financial Data Analysis

Data Mining and Financial Data Analysis


Most marketers understand the value of collecting financial data, but also realize the challenges of leveraging this knowledge to create intelligent, proactive pathways back to the customer. Data mining - technologies and techniques for recognizing and tracking patterns within data - helps businesses sift through layers of seemingly unrelated data for meaningful relationships, where they can anticipate, rather than simply react to, customer needs as well as financial need. In this accessible introduction, we provides a business and technological overview of data mining and outlines how, along with sound business processes and complementary technologies, data mining can reinforce and redefine for financial analysis.


1. The main objective of mining techniques is to discuss how customized data mining tools should be developed for financial data analysis.

2. Usage pattern, in terms of the purpose can be categories as per the need for financial analysis.

3. Develop a tool for financial analysis through data mining techniques.

Data mining:

Data mining is the procedure for extracting or mining knowledge for the large quantity of data or we can say data mining is "knowledge mining for data" or also we can say Knowledge Discovery in Database (KDD). Means data mining is : data collection , database creation, data management, data analysis and understanding.

There are some steps in the process of knowledge discovery in database, such as

1. Data cleaning. (To remove nose and inconsistent data)

2. Data integration. (Where multiple data source may be combined.)

3. Data selection. (Where data relevant to the analysis task are retrieved from the database.)

4. Data transformation. (Where data are transformed or consolidated into forms appropriate for mining by performing summary or aggregation operations, for instance)

5. Data mining. (An essential process where intelligent methods are applied in order to extract data patterns.)

6. Pattern evaluation. (To identify the truly interesting patterns representing knowledge based on some interesting measures.)

7. Knowledge presentation.(Where visualization and knowledge representation techniques are used to present the mined knowledge to the user.)

Data Warehouse:

A data warehouse is a repository of information collected from multiple sources, stored under a unified schema and which usually resides at a single site.


Most of the banks and financial institutions offer a wide verity of banking services such as checking, savings, business and individual customer transactions, credit and investment services like mutual funds etc. Some also offer insurance services and stock investment services.

There are different types of analysis available, but in this case we want to give one analysis known as "Evolution Analysis".

Data evolution analysis is used for the object whose behavior changes over time. Although this may include characterization, discrimination, association, classification, or clustering of time related data, means we can say this evolution analysis is done through the time series data analysis, sequence or periodicity pattern matching and similarity based data analysis.

Data collect from banking and financial sectors are often relatively complete, reliable and high quality, which gives the facility for analysis and data mining. Here we discuss few cases such as,

Eg, 1. Suppose we have stock market data of the last few years available. And we would like to invest in shares of best companies. A data mining study of stock exchange data may identify stock evolution regularities for overall stocks and for the stocks of particular companies. Such regularities may help predict future trends in stock market prices, contributing our decision making regarding stock investments.

Eg, 2. One may like to view the debt and revenue change by month, by region and by other factors along with minimum, maximum, total, average, and other statistical information. Data ware houses, give the facility for comparative analysis and outlier analysis all are play important roles in financial data analysis and mining.

Eg, 3. Loan payment prediction and customer credit analysis are critical to the business of the bank. There are many factors can strongly influence loan payment performance and customer credit rating. Data mining may help identify important factors and eliminate irrelevant one.

Factors related to the risk of loan payments like term of the loan, debt ratio, payment to income ratio, credit history and many more. The banks than decide whose profile shows relatively low risks according to the critical factor analysis.

We can perform the task faster and create a more sophisticated presentation with financial analysis software. These products condense complex data analyses into easy-to-understand graphic presentations. And there's a bonus: Such software can vault our practice to a more advanced business consulting level and help we attract new clients.

To help us find a program that best fits our needs-and our budget-we examined some of the leading packages that represent, by vendors' estimates, more than 90% of the market. Although all the packages are marketed as financial analysis software, they don't all perform every function needed for full-spectrum analyses. It should allow us to provide a unique service to clients.

The Products:

ACCPAC CFO (Comprehensive Financial Optimizer) is designed for small and medium-size enterprises and can help make business-planning decisions by modeling the impact of various options. This is accomplished by demonstrating the what-if outcomes of small changes. A roll forward feature prepares budgets or forecast reports in minutes. The program also generates a financial scorecard of key financial information and indicators.

Customized Financial Analysis by BizBench provides financial benchmarking to determine how a company compares to others in its industry by using the Risk Management Association (RMA) database. It also highlights key ratios that need improvement and year-to-year trend analysis. A unique function, Back Calculation, calculates the profit targets or the appropriate asset base to support existing sales and profitability. Its DuPont Model Analysis demonstrates how each ratio affects return on equity.

Financial Analysis CS reviews and compares a client's financial position with business peers or industry standards. It also can compare multiple locations of a single business to determine which are most profitable. Users who subscribe to the RMA option can integrate with Financial Analysis CS, which then lets them provide aggregated financial indicators of peers or industry standards, showing clients how their businesses compare.

iLumen regularly collects a client's financial information to provide ongoing analysis. It also provides benchmarking information, comparing the client's financial performance with industry peers. The system is Web-based and can monitor a client's performance on a monthly, quarterly and annual basis. The network can upload a trial balance file directly from any accounting software program and provide charts, graphs and ratios that demonstrate a company's performance for the period. Analysis tools are viewed through customized dashboards.

PlanGuru by New Horizon Technologies can generate client-ready integrated balance sheets, income statements and cash-flow statements. The program includes tools for analyzing data, making projections, forecasting and budgeting. It also supports multiple resulting scenarios. The system can calculate up to 21 financial ratios as well as the breakeven point. PlanGuru uses a spreadsheet-style interface and wizards that guide users through data entry. It can import from Excel, QuickBooks, Peachtree and plain text files. It comes in professional and consultant editions. An add-on, called the Business Analyzer, calculates benchmarks.

ProfitCents by Sageworks is Web-based, so it requires no software or updates. It integrates with QuickBooks, CCH, Caseware, Creative Solutions and Best Software applications. It also provides a wide variety of businesses analyses for nonprofits and sole proprietorships. The company offers free consulting, training and customer support. It's also available in Spanish.

ProfitSystem fx Profit Driver by CCH Tax and Accounting provides a wide range of financial diagnostics and analytics. It provides data in spreadsheet form and can calculate benchmarking against industry standards. The program can track up to 40 periods.

Source : http://ezinearticles.com/?Data-Mining-and-Financial-Data-Analysis&id=2752017

Saturday, 24 December 2016

One of the Main Differences Between Statistical Analysis and Data Mining

One of the Main Differences Between Statistical Analysis and Data Mining

Two methods of analyzing data that are common in both academic and commercial fields are statistical analysis and data mining. While statistical analysis has a long scientific history, data mining is a more recent method of data analysis that has arisen from Computer Science. In this article I want to give an introduction to these methods and outline what I believe is one of the main differences between the two fields of analysis.

Statistical analysis commonly involves an analyst formulating a hypothesis and then testing the validity of this hypothesis by running statistical tests on data that may have been collected for the purpose. For example, if an analyst was studying the relationship between income level and the ability to get a loan, the analyst may hypothesis that there will be a correlation between income level and the amount of credit someone may qualify for.

The analyst could then test this hypothesis with the use of a data set that contains a number of people along with their income levels and the credit available to them. A test could be run that indicates for example that there may be a high degree of confidence that there is indeed a correlation between income and available credit. The main point here is that the analyst has formulated a hypothesis and then used a statistical test along with a data set to provide evidence in support or against that hypothesis.

Data mining is another area of data analysis that has arisen more recently from computer science that has a number of differences to traditional statistical analysis. Firstly, many data mining techniques are designed to be applied to very large data sets, while statistical analysis techniques are often designed to form evidence in support or against a hypothesis from a more limited set of data.

Probably the mist significant difference here, however, is that data mining techniques are not used so much to form confidence in a hypothesis, but rather extract unknown relationships may be present in the data set. This is probably best illustrated with an example. Rather than in the above case where a statistician may form a hypothesis between income levels and an applicants ability to get a loan, in data mining, there is not typically an initial hypothesis. A data mining analyst may have a large data set on loans that have been given to people along with demographic information of these people such as their income level, their age, any existing debts they have and if they have ever defaulted on a loan before.

A data mining technique may then search through this large data set and extract a previously unknown relationship between income levels, peoples existing debt and their ability to get a loan.

While there are quite a few differences between statistical analysis and data mining, I believe this difference is at the heart of the issue. A lot of statistical analysis is about analyzing data to either form confidence for or against a stated hypothesis while data mining is often more about applying an algorithm to a data set to extract previously unforeseen relationships.


Wednesday, 14 December 2016

Data Extraction Services - A Helpful Hand For Large Organization

Data Extraction Services - A Helpful Hand For Large Organization

The data extraction is the way to extract and to structure data from not structured and semi-structured electronic documents, as found on the web and in various data warehouses. Data extraction is extremely useful for the huge organizations which deal with considerable amounts of data, daily, which must be transformed into significant information and be stored for the use this later on.

Your company with tons of data but it is difficult to control and convert the data into useful information. Without right information at the right time and based on half of accurate information, decision makers with a company waste time by making wrong strategic decisions. In high competing world of businesses, the essential statistics such as information customer, the operational figures of the competitor and the sales figures inter-members play a big role in the manufacture of the strategic decisions. It can help you to take strategic business decisions that can shape your business' goals..

Outsourcing companies provide custom made services to the client's requirements. A few of the areas where it can be used to generate better sales leads, extract and harvest product pricing data, capture financial data, acquire real estate data, conduct market research , survey and analysis, conduct product research and analysis and duplicate an online database..

The different types of Data Extraction Services:

    Database Extraction:
Reorganized data from multiple databases such as statistics about competitor's products, pricing and latest offers and customer opinion and reviews can be extracted and stored as per the requirement of company.

    Web Data Extraction:
Web Data Extraction is also known as data Extraction which is usually referred to the practice of extract or reading text data from a targeted website.

Businesses have now realized about the huge benefits they can get by outsourcing their services. Then outsourcing is profitable option for business. Since all projects are custom based to suit the exact needs of the customer, huge savings in terms of time, money and infrastructure are among the many advantages that outsourcing brings.

Advantages of Outsourcing Data Extraction Services:

    Improved technology scalability
    Skilled and qualified technical staff who are proficient in English
    Advanced infrastructure resources
    Quick turnaround time
    Cost-effective prices
    Secure Network systems to ensure data safety
    Increased market coverage

By outsourcing, you can definitely increase your competitive advantages. Outsourcing of services helps businesses to manage their data effectively, which in turn would enable them to experience an increase in profits.

Outsourcing Web Research offer complete Data Extraction Services and Solutions to quickly collective data and information from multiple Internet sources for your Business needs in a cost efficient manner. For more info please visit us at: http://www.webscrapingexpert.com/ or directly send your requirements at: info@webscrapingexpert.com


Friday, 9 December 2016

Increasing Accessibility by Scraping Information From PDF

Increasing Accessibility by Scraping Information From PDF

You may have heard about data scraping which is a method that is being used by computer programs in extracting data from an output that comes from another program. To put it simply, this is a process which involves the automatic sorting of information that can be found on different resources including the internet which is inside an html file, PDF or any other documents. In addition to that, there is the collection of pertinent information. These pieces of information will be contained into the databases or spreadsheets so that the users can retrieve them later.

Most of the websites today have text that can be accessed and written easily in the source code. However, there are now other businesses nowadays that choose to make use of Adobe PDF files or Portable Document Format. This is a type of file that can be viewed by simply using the free software known as the Adobe Acrobat. Almost any operating system supports the said software. There are many advantages when you choose to utilize PDF files. Among them is that the document that you have looks exactly the same even if you put it in another computer so that you can view it. Therefore, this makes it ideal for business documents or even specification sheets. Of course there are disadvantages as well. One of which is that the text that is contained in the file is converted into an image. In this case, it is often that you may have problems with this when it comes to the copying and pasting.

This is why there are some that start scraping information from PDF. This is often called PDF scraping in which this is the process that is just like data scraping only that you will be getting information that is contained in your PDF files. In order for you to begin scraping information from PDF, you must choose and exploit a tool that is specifically designed for this process. However, you will find that it is not easy to locate the right tool that will enable you to perform PDF scraping effectively. This is because most of the tools today have problems in obtaining exactly the same data that you want without personalizing them.

Nevertheless, if you search well enough, you will be able to encounter the program that you are looking for. There is no need for you to have programming language knowledge in order for you to use them. You can easily specify your own preferences and the software will do the rest of the work for you. There are also companies out there that you can contact and they will perform the task since they have the right tools that they can use. If you choose to do things manually, you will find that this is indeed tedious and complicated whereas if you compare this to having professionals do the job for you, they will be able to finish it in no time at all. Scraping information from PDF is a process where you collect the information that can be found on the internet and this does not infringe copyright laws.


Monday, 5 December 2016

Three Common Methods For Web Data Extraction

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code


- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.
- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.
- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).
- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.


- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.
- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.
- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.
- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence


- You create it once and it can more or less extract the data from any page within the content domain you're targeting.
- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).
- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.


- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.
- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.
- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software


- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.
- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.
- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.


- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.
- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.
- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.

source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Wednesday, 30 November 2016

PDF Scraping: Making Modern File Formats More Accessible

PDF Scraping: Making Modern File Formats More Accessible

Data scraping is the process of automatically sorting through information contained on the internet inside html, PDF or other documents and collecting relevant information to into databases and spreadsheets for later retrieval. On most websites, the text is easily and accessibly written in the source code but an increasing number of businesses are using Adobe PDF format (Portable Document Format: A format which can be viewed by the free Adobe Acrobat software on almost any operating system. See below for a link.). The advantage of PDF format is that the document looks exactly the same no matter which computer you view it from making it ideal for business forms, specification sheets, etc.; the disadvantage is that the text is converted into an image from which you often cannot easily copy and paste. PDF Scraping is the process of data scraping information contained in PDF files. To PDF scrape a PDF document, you must employ a more diverse set of tools.

There are two main types of PDF files: those built from a text file and those built from an image (likely scanned in). Adobe's own software is capable of PDF scraping from text-based PDF files but special tools are needed for PDF scraping text from image-based PDF files. The primary tool for PDF scraping is the OCR program. OCR, or Optical Character Recognition, programs scan a document for small pictures that they can separate into letters. These pictures are then compared to actual letters and if matches are found, the letters are copied into a file. OCR programs can perform PDF scraping of image-based PDF files quite accurately but they are not perfect.

Once the OCR program or Adobe program has finished PDF scraping a document, you can search through the data to find the parts you are most interested in. This information can then be stored into your favorite database or spreadsheet program. Some PDF scraping programs can sort the data into databases and/or spreadsheets automatically making your job that much easier.

Quite often you will not find a PDF scraping program that will obtain exactly the data you want without customization. Surprisingly a search on Google only turned up one business, (the amusingly named ScrapeGoat.com that will create a customized PDF scraping utility for your project. A handful of off the shelf utilities claim to be customizable, but seem to require a bit of programming knowledge and time commitment to use effectively. Obtaining the data yourself with one of these tools may be possible but will likely prove quite tedious and time consuming. It may be advisable to contract a company that specializes in PDF scraping to do it for you quickly and professionally.

Let's explore some real world examples of the uses of PDF scraping technology. A group at Cornell University wanted to improve a database of technical documents in PDF format by taking the old PDF file where the links and references were just images of text and changing the links and references into working clickable links thus making the database easy to navigate and cross-reference. They employed a PDF scraping utility to deconstruct the PDF files and figure out where the links were. They then could create a simple script to re-create the PDF files with working links replacing the old text image.

A computer hardware vendor wanted to display specifications data for his hardware on his website. He hired a company to perform PDF scraping of the hardware documentation on the manufacturers' website and save the PDF scraped data into a database he could use to update his webpage automatically.

PDF Scraping is just collecting information that is available on the public internet. PDF Scraping does not violate copyright laws.

PDF Scraping is a great new technology that can significantly reduce your workload if it involves retrieving information from PDF files. Applications exist that can help you with smaller, easier PDF Scraping projects but companies exist that will create custom applications for larger or more intricate PDF Scraping jobs.

Source: http://ezinearticles.com/?PDF-Scraping:-Making-Modern-File-Formats-More-Accessible&id=193321

Saturday, 26 November 2016

How Xpath Plays Vital Role In Web Scraping

How Xpath Plays Vital Role In Web Scraping

XPath is a language for finding information in structured documents like XML or HTML. You can say that XPath is (sort of) SQL for XML or HTML files. XPath is used to navigate through elements and attributes in an XML or HTML document.

To understand XPath we must be clear about elements and nodes which are the building blocks of XML and HTML. Let’s talk about them. Here is an example element in an HTML document:

   <a class=”hyperlink” href=http://www.google.com>google</a>

Copy the above text to a file, name it as sample.html and open it in a browser. This will end up as a text link displaying the words “google” and it will take you to www.google.com. For each element there are three main parts: The type, the attributes, andthe text. They are listed below:

 a                                 Type
class,  href                Attributes
google                       Text

Let’s grab some XPath developer tools. I am on Firebug for Firefox or you can use Chrome’s developer tools. We will now form some XPath expressions to extract data from the above element. We will also verify the XPath by using Firebug Console.

For extracting the text “google”:


For extracting the hyperlink i.e. ”www.google.com” :


That’s all with a single element but in reality, you need to deal with more complex forms.

Let’s proceed to the idea of nodes, and its familial relationship of HTML elements. Look at this example code:

 <div title=”Section1″>

   <table id=”Search”>

       <tr class=”Yahoo”>Yahoo Search</tr>

       <tr class=”Google”>Google Search</tr>



 Notice the </div> at the bottom? That means the table and tr elements are contained within the div. These other elements are considered descendants of the div. The table is a child, and the tr is a grandchild (and so on and so forth). The two tr elements are considered siblings each other. This is vital, as XPath uses these relationships to find your element.

So suppose you want to find the Google item. Any of the following expressions will work:


So let’s analyze the expressions. We start at the top element (also known as a node). The // means to search all descendants, / means to just look at the current element’s children. So //div means look through all descendants for a div element. The brackets [] specify something about that element. So we can look for an attribute with the @ symbol, or look for text with the text() function. We can chain as many of these together as we can.

Here is a quick reference:

   //             Search all descendant elements
   /              Search all child elements
   []             The predicate (specifies something about the element you are looking for)
   @           Specifies an element attribute. (For example, @title)
   .               Specifies the current node (useful when you want to look for an element’s children in the predicate)
   ..              Specifies the parent node
  text()       Gets the text of the element.
In the context of web scraping, XPath is a nice tool to have in your belt, as it allows you to write specifications of document locations more flexibly than CSS selectors.

Please subscribe to our blog to get notified when we publish the next blog post.

Source: http://blog.datahut.co/how-xpath-plays-vital-role-in-web-scraping/

Wednesday, 9 November 2016

Tapping The Mining Services Goldmine

Tapping The Mining Services Goldmine

In Australia, resources booms tend to come and go. In a recent speech, Reserve Bank Deputy Governor Ric Battellino identified five major booms over the last two hundred years - from the gold rush of the 1850s, to our current minerals and energy boom.

Many have argued that the current boom is different from anything we've experienced before, with the modernisation of the Chinese and Indian economies likely to keep demand high for decades. That's led some analysts to talk of a resources supercycle. And yet a supercycle is still a cycle.

By definition, cycles are uneven, with commodity prices ebbing and flowing in response to demand, economic conditions and market sentiment. And the share prices of resources companies tend to move with them.

Which raises the question: what's the best way for investors to tap into the potential of the mining boom, without the heart-stopping volatility that mining stocks sometimes deliver?
Invest in the store that sells the spade

Legend has it that the people who really profited from Australia's gold rush weren't the miners who flocked to the fields, but the store-owners who sold them their spades and pans. You can put the same principle to work today by investing in mining services and engineering companies.

Here are five reasons to consider giving mining services companies a place in your portfolio:

1. Growing demand

In November, the Australian Bureau of Agricultural and Resource Economics reported that mining and energy companies plan to invest a record $132.9bn in new projects, a 58% increase from the previous year. That includes 72 projects at an advanced stage of development, such as the $43bn Gorgon LNG project and the $20bn Olympic dam expansion. The mining services sector is poised to benefit from all of them.

The sector also stands to benefit from Australia's worsening skills shortage, with more companies looking to contractors to provide essential services in remote locations.

2. Less volatility

Resource stocks tend to fluctuate with commodity prices, which are subject to international economic forces and market sentiment beyond the control of any individual company. As a result, they are among the most volatile companies on the Australian sharemarket. But mining services stocks, while still exposed to the commodities cycle, tend to be more stable.

3. More predictable cash flow

One reason for the comparative volatility of commodity companies is that their cash flow can be very variable. In the development phase, they need to make significant capital expenditure, often leading to negative cash flows. And while they enjoy healthy revenues in the production phase, that revenue may diminish as a resource is exhausted, unless they make further investments in exploration and development.
In contrast, mining services companies require comparatively little capital investment, with more predictable cash flows over the long-term.

4. Higher dividends

Predictable cash flows and lower capital expenditures often allow services companies to pay out more of their earnings as dividends, making them more appealing for income-oriented investors.

5. No need to pick winners

Many miners are highly leveraged to demand for a single commodity, whether it's gold, coal, copper or iron ore. Some are reliant on a single mine or field. Whereas services companies generally have a more diversified customer base.

Source: http://ezinearticles.com/?Tapping-The-Mining-Services-Goldmine&id=5924837

Monday, 24 October 2016

Web Scraping with Python: A Beginner’s Guide

Web Scraping with Python: A Beginner’s Guide

In the Big Data world, Web Scraping or Data extraction services are the primary requisites for Big Data Analytics. Pulling up data from the web has become almost inevitable for companies to stay in business. Next question that comes up is how to go about web scraping as a beginner.

Data can be extracted or scraped from a web source using a number of methods. Popular websites like Google, Facebook, or Twitter offer APIs to view and extract the available data in a structured manner.  This prevents the use of other methods that may not be preferred by the API provider. However, the demand to scrape a website arises when the information is not readily offered by the website. Python, an open source programming language is often used for Web Scraping due to its simple and rich ecosystem. It contains a library called “BeautifulSoup” which carries on this task. Let’s take a deeper look into web scraping using python.

Setting up a Python Environment:

To carry out web scraping using Python, you will first have to install the Python Environment, which enables to run code written in the python language. The libraries perform data scraping;

Beautiful Soup is a convenient-to-use python library. It is one of the finest tools for extracting information from a webpage. Professionals can scrape information from web pages in the form of tables, lists, or paragraphs. Urllib2 is another library that can be used in combination with the BeautifulSoup library for fetching the web pages. Filters can be added to extract specific information from web pages. Urllib2 is a Python module that can fetch URLs.


To install Python libraries on MAC OSX, users need to open a terminal win and type in the following commands, single command at a time:

sudoeasy_install pip

pip install BeautifulSoup4

pip install lxml

For Windows 7 & 8 users:

Windows 7 & 8 users need to ensure that the python environment gets installed first. Once, the environment is installed, open the command prompt and find the way to root C:/ directory and type in the following commands:

easy_install BeautifulSoup4


Once the libraries are installed, it is time to write data scraping code.

Running Python:

Data scraping must be done for a distinct objective such as to scrape current stock of a retail store. First, a web browser is required to navigate the website that contains this data. After identifying the table, right click anywhere on it and then select inspect element from the dropdown menu list. This will cause a window to pop-up on the bottom or side of your screen displaying the website’s html code. The rankings appear in a table. You might need to scan through the HTML data until you find the line of code that highlights the table on the webpage.

Python offers some other alternatives for HTML scraping apart from BeautifulSoup. They include:


 Web scraping converts unstructured data from HTML code into structured form such as tabular data in an Excel worksheet. Web scraping can be done in many ways ranging from the use of Google Docs to programming languages. For people who do not have any programming knowledge or technical competencies, it is possible to acquire web data by using web scraping services that provide ready to use data from websites of your preference.

HTML Tags:

To perform web scraping, users must have a sound knowledge of HTML tags. It might help a lot to know that HTML links are defined using anchor tag i.e. <a> tag, “<a href=“http://…”>The link needs to be here </a>”. An HTML list comprises <ul> (unordered) and <ol> (ordered) list. The item of list starts with <li>.

HTML tables are defined with<Table>, row as <tr> and columns are divided into data as <td>;

    <!DOCTYPE html> : A HTML document starts with a document type declaration
    The main part of the HTML document in unformatted, plain text is defined by <body> and </body> tags
    The headings in HTML are defined using the heading tags from <h1> to <h5>
    Paragraphs are defined with the <p> tag in HTML
    An entire HTML document is contained between <html> and </html>

Using BeautifulSoup in Scraping:

While scraping a webpage using BeautifulSoup, the main concern is to identify the final objective. For instance, if you would like to extract a list from webpage, a step wise approach is required:

    First and foremost step is to import the required libraries:

 #import the library used to query a website

import urllib2

#specify the url wiki = “https://”

#Query the website and return the html to the variable ‘page’

page = urllib2.urlopen(wiki)

#import the Beautiful soup functions to parse the data returned from the website

from bs4 import BeautifulSoup

#Parse the html in the ‘page’ variable, and store it in Beautiful Soup format

soup = BeautifulSoup(page)

    Use function “prettify” to visualize nested structure of HTML page
    Working with Soup tags:

Soup<tag> is used for returning content between opening and closing tag including tag.


 Out[30]:<title>List of Presidents in India till 2010 – Wikipedia, the free encyclopedia</title>

    soup.<tag>.string: Return string within given tag
    In [38]:soup.title.string
    Out[38]:u ‘List of Presidents in India and Brazil till 2010 in India – Wikipedia, the free encyclopedia’
    Find all the links within page’s <a> tags: Tag a link using tag “<a>”. So, go with option soup.a and it should return the links available in the web page. Let’s do it.
    In [40]:soup.a

Out[40]:<a id=”top”></a>

    Find the right table:

As a table to pull up information about Presidents in India and Brazil till 2010 is being searched for, identifying the right table first is important. Here’s a command to scrape information enclosed in all table tags.

all_tables= soup.find_all(‘table’)

Identify the right table by using attribute “class” of table needs to filter the right table. Thereafter, inspect the class name by right clicking on the required table of web page as follows:

    Inspect element
    Copy the class name or find the class name of right table from the last command’s output.

 right_table=soup.find(‘table’, class_=’wikitable sortable plainrowheaders’)


That’s how we can identify the right table.

    Extract the information to DataFrame: There is a need to iterate through each row (tr) and then assign each element of tr (td) to a variable and add it to a list. Let’s analyse the Table’s HTML structure of the table. (extract information for table heading <th>)

To access value of each element, there is a need to use “find(text=True)” option with each element.  Finally, there is data in dataframe.

There are various other ways to scrape data using “BeautifulSoup” that reduce manual efforts to collect data from web pages. Code written in BeautifulSoup is considered to be more robust than the regular expressions. The web scraping method we discussed use “BeautifulSoup” and “urllib2” libraries in Python. That was a brief beginner’s guide to start using Python for web scraping.

Source: https://www.promptcloud.com/blog/web-scraping-python-guide

Thursday, 13 October 2016

Scraping Yelp Business Data With Python Scraping Script

Scraping Yelp Business Data With Python Scraping Script

Yelp is a great source of business contact information with details like address, postal code, contact information; website addresses etc. that other site like Google Maps just does not. Yelp also provides reviews about the particular business. The yelp business database can be useful for telemarketing, email marketing and lead generation.

Are you looking for yelp business details database? Are you looking for scraping data from yelp website/business directory? Are you looking for yelp screen scraping software? Are you looking for scraping the business contact information from the online Yelp? Then you are at the right place.

Here I am going to discuss how to scrape yelp data for lead generation and email marketing. I have made a simple and straight forward yelp data scraping script in python that can scrape data from yelp website. You can use this yelp scraper script absolutely free.

I have used urllib, BeautifulSoup packages. Urllib package to make http request and parsed the HTML using BeautifulSoup, used Threads to make the scraping faster.
Yelp Scraping Python Script

import urllib
from bs4 import BeautifulSoup
import re
from threading import Thread

#List of yelp urls to scrape

#function that will do actual scraping job
def scrape(ur):

          html = urllib.urlopen(ur).read()
          soup = BeautifulSoup(html)

      title = soup.find('h1',itemprop="name")
          saddress = soup.find('span',itemprop="streetAddress")
          postalcode = soup.find('span',itemprop="postalCode")
          print title.text
          print saddress.text
          print postalcode.text
          print "-------------------"

threadlist = []

#making threads
while i<len(url):
          t = Thread(target=scrape,args=(url[i],))

for b in threadlist:

Recently I had worked for one German company and did yelp scraping project for them and delivered data as per their requirement. If you looking for scraping data from business directories like yelp then send me your requirement and I will get back to you with sample.

Source: http://webdata-scraping.com/scraping-yelp-business-data-python-scraping-script/

Wednesday, 21 September 2016

Run Code Template – New Feature Added to Fminer Web Scraping Tool

Run Code Template – New Feature Added to Fminer Web Scraping Tool

Fminer is one of the powerful web scraping software, I already given brief of all the Fminer features in previous post. In this post I am going to introduce one of the interesting feature of fminer which is Run Code Template that is recently added to Fminer, this feature is similar to “Fminer Run Code” action but it’s different in a way you can use it. The Run Code Action you can use inside the data scraping flow and python code get executed when scraper start running.

While Run Code Templates are the saved python code snippets that you can run on the data tables after scraping completes. Assume if you get white space in scraped data then you can easily trim this left and right spaces by just executing “strip_column” template, see the code of that template below.

'''Strip all data of a column in data table
Remove the blank of data in the head and the tail.

tabName = '[%table1|data table%]'
colName = '[%table1.column1|table column for strip%]'

tab = tables[tabName]
for i, row in enumerate(tab):
    row[colName] = row[colName].strip()   
    tab.edit_row(i, row)

This template comes with Fminer and few other template like “merge_tables_with_same_columns”.  Below are the steps how you can execute template python code on scraped data.

Step 1: Click on second icon from right that says “Run Code” under the Data section

Step 2: One popup will appear, you need to click on “Templates” icon and choose the template you want to execute and then click on Ok.

Step 3: Now the window will appear for configuration that will ask you to choose the table and column under that table on which you want to execute the code. Now click on Ok again.

Step 4: Now you can see the code of that template, now you can click on execute icon and script will start running, based on number of records it will take time to finish execution.

In many web scraping projects I found this template code very handy for cleaning data and making life easy. Templates are stored at following path so you can create your own template with customized code.

C:\Program Files (x86)\FMiner\templates

I have created one template which I use to remove HTML code that comes while scraping badly organized HTML pages. Below is the code of template for stripping html:

'''Strip HTML will remove all html tags of a column in data table.
import re
tabName = '[%table1|data table%]'
colName = '[%table1.column1|table column for substring%]'
colNew = '[%table1.column1|table column to add new data%]'
tab = tables[tabName]
for i, row in enumerate(tab):
    cleanr =re.compile('<.*?>')
    cleantext = re.sub(cleanr,'', row[colName])
    row[colNew] = cleantext 
    tab.edit_row(i, row)

Stay connected as I am going to post more code templates that will make your web scraping life easy and manipulate data on fly.

Source: http://webdata-scraping.com/run-code-template-new-feature-added-fminer-web-scraping-tool/

Sunday, 11 September 2016

How Web Scraping for Brand Monitoring is used in Retail Sector

How Web Scraping for Brand Monitoring is used in Retail Sector

Structured or unstructured, business data always plays an instrumental part in driving growth, development, and innovation for your dream venture. Irrespective of industrial sectors or verticals, big data, seems to be of paramount significance for every business or enterprise.

The unsurpassed popularity and increasing importance of big data gave birth to the concept of web scraping, thus enhancing growth opportunities for startups. Large or small, every business establishment will now achieve successful website monitoring and tracking.
How web scraping serves your branding need?

Web scraping helps in extracting unorganized data and ordering it into organized and manageable formats. So if your brand is being talked about in multiple ways (on social media, on expert forums, in comments etc.), you can set the scraping tool algorithm to fetch only data that contains reference about the brand. As an outcome, marketers and business owners around the brand can gauge brand sentiment and tweak their launch marketing campaign to enhance visibility.

Look around and you will discover numerous web scraping solutions ranging from manual to fully automated systems. From Reputation Tracking to Website monitoring, your web scraper can help create amazing insights from seemingly random bits of data (both in structured as well as unstructured format).
Using web scraping

The concept of web scraping revolutionizes the use of big data for business. With its availability across sectors, retailers are on cloud nine. Here’s how the retail market is utilizing the power of Web Scraping for brand monitoring.

Determining pricing strategy

The retail market is filled with competition. Whether it is products or pricing strategies, every retailer competes hard to stay ahead of the growth curve. Web scraping techniques will help you crawl price comparison sites’ pricing data, product descriptions, as well as images to receive data for comparison, affiliation, or analytics.

As a result, retailers will have the opportunity to trade their products at competitive prices, thus increasing profit margins by a whopping 10%.

Tracking online presence

Current trends in ecommerce herald the need for a strong online presence. Web scraping takes cue from this particular aspect, thus scraping reviews and profiles on websites. By providing you a crystal clear picture of product performance, customer behavior, and interactions, web scraping will help you achieve Online Brand Intelligence and monitoring.
Detection of fraudulent reviews

Present-day purchasers have this unique habit of referring to reviews, before finalizing their purchase decisions. Web scraping helps in the identification of opinion-spamming, thus figuring out fake reviews. It will further extend support in detecting, reviewing, streamlining, or blocking reviews, according to your business needs.
Online reputation management

Web data scraping helps in figuring out avenues to take your ORM objectives forward. With the help of the scraped data, you learn about both the impactful as well as vulnerable areas for online reputation management. You will have the web crawler identifying demographic opinions such as age group, gender, sentiments, and GEO location.

Social media analytics

Since social media happens to be one of the most crucial factors for retailers, it will be imperative to Scrape Social Media websites and extract data from Twitter. The web scraping technology will help you watch your brand in Social Media along with fetching Data for social media analytics. With social media channels such as Twitter monitoring services, you will strengthen your firm’s’ branding even more than before.
Advantages of BM

As a business, you might want to monitor your brand in social media to gain deep insights about your brand’s popularity and the current consumer behavior. Brand monitoring companies will watch your brand in social media and come up with crucial data for social media analytics. This process has immense benefits for your business, these are summarized over here –

Locate Infringers

Leading brands often face the challenge thrown by infringers. When brand monitoring companies keep a close look at products available in the market, there is less probability of a copyright infringement. The biggest infringement happens in the packaging, naming and presentation of products. With constant monitoring and legal support provided by the Trademark Law, businesses could remain protected from unethical competitors and illicit business practices.

Manage Consumer Reaction and Competitor’s Challenges

A good business keeps a check on the current consumer sentiment in the targeted demographic and positively manages the same in the interest of their brand. The feedback from your consumers could be affirmative or negative but if you have a hold on the social media channels, web platforms and forums, you, as a brand will be able to propagate trust at all times.

When competitor brands indulge in backbiting or false publicity about your brand, you can easily tame their negative comments by throwing in a positive image in front of your target audience. So, brand monitoring and its active implementation do help in positive image building and management for businesses.
Why Web scraping for BM?

Web scraping for brand monitoring gives you a second pair of eyes to look at your brand as a general consumer. Considering the flowing consumer sentiment in the market during a specific business season, you could correct or simply innovate better ways to mold the target audience in your brand’s favor. Through a systematic approach towards online brand intelligence and monitoring, future business strategies and possible brand responses could be designed, keeping your business actively prepared for both types of scenarios.

For effective web scraping, businesses extract data from Twitter that helps them understand ‘what’s trending’ in their business domain. They also come closer to reality in terms of brand perception, user interaction and brand visibility in the notions of their clientele. Web scraping professionals or companies scrape social media websites to gather relevant data related to your brand or your competitor’s that has the potential to affect your growth as a business. Management and organization of this data is done to extract out significant and reference building facts. Future strategy for your brand is designed by brand monitoring professionals keeping in mind the facts accumulated through web scraping. The data obtained through web scraping helps in –

Knowing the actual brand potential,
Expanding brand coverage,
Devising brand penetration,
Analyzing scope and possibilities for a brand and
Design thoughtful and insightful brand strategies.

In simple words, web scraping provides a business enough base of information that could be used to devise future plans and to make suggestive changes in the current business strategy.

Advantages of Web scraping for BM

Web scraping has made things seamless for businesses involved in managing their brands and active brand monitoring. There is no doubt, that web scraping for brand monitoring comes with immense benefits, some of these are –

Improved customer insight

When you have in hand and factual knowledge about your consumer base through social media channels, you are in a strong position to portray your positive image as a brand. With more realistic data on your hands, you could develop strategies more effectively and make realistic goals for your brand’s improvement. Social media insights also allows marketers to create highly targeted and custom marketing messages – thus leading to better likelihood of sales conversion.

Monitoring your Competition

Web scraping helps you realize where your brand stands in the market among the competition. The actual penetration of your brand in the targeted segment helps in getting a clear picture of your present business scenario. Through careful removal of competition in your concerned business category, you could strengthen your brand image.

Staying Informed

When your brand monitoring team is keeping track of all social media channels, it becomes easier for you to stay informed about latest comments about your business on sites like Facebook, Twitter and social forums etc. You could have deep knowledge about the consumer behavior related to your brand and your competitors on these web destinations.

Improved Consumer Satisfaction and Sales

Reputation tracking done through web scraping helps in generating planned response at times of crisis. It also mends the communication gap between consumer and the brand, hence improving the consumer satisfaction. This automatically translates into trust building and brand loyalty improving your brand’s sales.

To sign off

By granting opportunities to monitor your social media data, web scraping is undoubtedly helping retail businesses take a significant step towards perfect branding. If you are one of the key players in this sector, there’s reason for celebration ahead!

Source: https://www.promptcloud.com/blog/How-Web-Scraping-for-Brand-Monitoring-is-used-in-Retail-Sector

Wednesday, 31 August 2016

How Web Scraping can Help you Detect Weak spots in your Business

How Web Scraping can Help you Detect Weak spots in your Business

Business intelligence is not a new term. Businesses have always been employing experts for analysing the progress, market and industry trends to keep their growth graph going up. Now that we have big data and the tool to gather this data – Web scraping, business intelligence has become even more fruitful. In fact, business intelligence has become a necessary thing to survive now that the competition is fierce in every industry. This is the reason why most enterprises depend on web scraping solutions to gather the data relevant to their businesses. This data is highly insightful and dependable enough to make critical business decisions. Business intelligence from web scraping is definitely a game changer for companies as it can supply relevant and actionable data with minimal effort.

Most businesses have weak spots that are being overlooked or hidden from the plain sight. These weak spots, if left unnoticed can gradually result in the downfall of your company. Here is how you can use data acquired through web scraping to detect weak spots in your business and strengthen them.

Competitor analysis

Many a times, you can find out the flaws in your business by keeping a close watch on your competitors. Competitor analysis is something that we owe to web scraping as the level of competitive intelligence that you can derive from web scraping has never been achievable in the past. With crawling forums and social media sites where your target audience is, you can easily find out if your competitor is leveraging something you have overlooked. Competitor analysis is all about staying updated to each and every action by your competitors, so that you can always be prepared for their next strategic move. If your competitors are doing better than you, this data can be used to make a comparison between your business and theirs which would give you insights on where you lack.

Brand monitoring on Social media

With social media platforms acting like platforms where businesses and customers can interact with each other, the data available on these sites are increasingly becoming relevant to businesses. Any issues in your business operations will also reflect on your customer sentiments. Social media is a goldmine of sentiment data that can help you detect issues within your company. By analysing the posts that mention your brand or product on social media sites, you can identify what department of your company is functioning well and what isn’t.

For example, if you are an Ecommerce portal and many users are complaining about delivery issues from your company on social media, you might want to switch to a better logistics partner who does a better job. The ability to identify such issues at the earliest is extremely important and that’s where web scraping becomes a life saver. With social media scraping, monitoring your brand on social media is easy like never before and the chances of minor issues escalating to bigger ones is almost non-existent. Brand monitoring is extremely crucial if you are a business operating in the online space. Social media scraping solutions are provided by many leading web scraping companies, which totally eliminates the technical complications associated with the process for you.

Finding untapped opportunities

There are always new and untapped markets and opportunities that are relevant to your business. Finding them is not going to be an easy task with manual and outdated methods of research. Web scraping can fill this gap and help you find opportunities that your company can make use of to leverage your reach and progress. Sometimes, targeting the right audience makes all the difference that you’ve been trying to make. By using web crawling to find mentions of your relevant keywords on the web, you can easily stay updated on your niche and fill in to any new untapped markets. Web crawling for keywords is better explained in our previous blog.

Bottom line

It is not a cakewalk to stay ahead in the competition considering how competitive every industry has become in this digital age. It is crucial to find the weak spots and untapped opportunities of your business before someone else does. Of course, you can always use some help from the technology when you need it. Web scraping is clearly the best way to find and gather data that would help you figure these out. With web crawling solutions that can completely take care of this niche process, nothing is stopping you from using the data and insights that the web has in stock for your business.

Source: https://www.promptcloud.com/blog/web-scraping-detect-weak-spots-business

Wednesday, 24 August 2016

How Web Data Extraction Services Will Save Your Time and Money by Automatic Data Collection

How Web Data Extraction Services Will Save Your Time and Money by Automatic Data Collection

Data scrape is the process of extracting data from web by using software program from proven website only. Extracted data any one can use for any purposes as per the desires in various industries as the web having every important data of the world. We provide best of the web data extracting software. We have the expertise and one of kind knowledge in web data extraction, image scrapping, screen scrapping, email extract services, data mining, web grabbing.

Who can use Data Scraping Services?

Data scraping and extraction services can be used by any organization, company, or any firm who would like to have a data from particular industry, data of targeted customer, particular company, or anything which is available on net like data of email id, website name, search term or anything which is available on web. Most of time a marketing company like to use data scraping and data extraction services to do marketing for a particular product in certain industry and to reach the targeted customer for example if X company like to contact a restaurant of California city, so our software can extract the data of restaurant of California city and a marketing company can use this data to market their restaurant kind of product. MLM and Network marketing company also use data extraction and data scrapping services to to find a new customer by extracting data of certain prospective customer and can contact customer by telephone, sending a postcard, email marketing, and this way they build their huge network and build large group for their own product and company.

We helped many companies to find particular data as per their need for example.

Web Data Extraction

Web pages are built using text-based mark-up languages (HTML and XHTML), and frequently contain a wealth of useful data in text form. However, most web pages are designed for human end-users and not for ease of automated use. Because of this, tool kits that scrape web content were created. A web scraper is an API to extract data from a web site. We help you to create a kind of API which helps you to scrape data as per your need. We provide quality and affordable web Data Extraction application

Data Collection

Normally, data transfer between programs is accomplished using info structures suited for automated processing by computers, not people. Such interchange formats and protocols are typically rigidly structured, well-documented, easily parsed, and keep ambiguity to a minimum. Very often, these transmissions are not human-readable at all. That's why the key element that distinguishes data scraping from regular parsing is that the output being scraped was intended for display to an end-user.

Email Extractor

A tool which helps you to extract the email ids from any reliable sources automatically that is called a email extractor. It basically services the function of collecting business contacts from various web pages, HTML files, text files or any other format without duplicates email ids.

Screen scrapping

Screen scraping referred to the practice of reading text information from a computer display terminal's screen and collecting visual data from a source, instead of parsing data as in web scraping.

Data Mining Services

Data Mining Services is the process of extracting patterns from information. Datamining is becoming an increasingly important tool to transform the data into information. Any format including MS excels, CSV, HTML and many such formats according to your requirements.

Web spider

A Web spider is a computer program that browses the World Wide Web in a methodical, automated manner or in an orderly fashion. Many sites, in particular search engines, use spidering as a means of providing up-to-date data.

Web Grabber

Web grabber is just a other name of the data scraping or data extraction.

Web Bot

Web Bot is software program that is claimed to be able to predict future events by tracking keywords entered on the Internet. Web bot software is the best program to pull out articles, blog, relevant website content and many such website related data We have worked with many clients for data extracting, data scrapping and data mining they are really happy with our services we provide very quality services and make your work data work very easy and automatic.

Source: http://ezinearticles.com/?How-Web-Data-Extraction-Services-Will-Save-Your-Time-and-Money-by-Automatic-Data-Collection&id=5159023

Friday, 12 August 2016

How to Scrape a Website into Excel without programming

How to Scrape a Website into Excel without programming

This web scraping tutorial will teach you visually step by step how to scrape or extract or pull data from websites using import.io(Free Tool) without programming skills into Excel.

Personally, I use web scraping for analysing my competitors’ best-performing blog posts or content such as what blog posts or content received most comments or social media shares.

In this tutorial,We will scrape the following data from a blog:

    All blog posts URLs.
    Authors names for each post.
    Blog posts titles.
    The number of social media shares each post received.

Then we will use the extracted data to determine what are the popular blog posts and their authors,which posts received much engagement from users through social media shares and on page comments.

Let’s get started.

Step 1:Install import.io app

The first step is to install import.io app.A free web scraping tool and one of the best web scraping software.It is available for Windows,Mac and Linux platforms.Import.io offers advanced data extraction features without coding by allowing you to create custom APIs or crawl entire websites.

After installation, you will need to sign up for an account.It is completely free so don’t worry.I will not cover the installation process.Once everything is set correctly you will see something similar to the window below after your first login.

Step 2:Choose how to scrape data using import.io extractor

With import.io you can do data extraction by creating custom APIs or crawling the entire websites.It comes equipped with different tools for data extraction such as magic,extractor,crawler and connector.

In this tutorial,I will use a tool called “extractor” to create a custom API for our data extraction process.

To get started click the “new” red button on the right top of the page and then click “Start Extractor” button on the pop-up window.

After clicking  “Start Extractor” the Import.io app internal browser window will open as shown below.

Step 3:Data scraping process

Now after the import.io browser is open navigate to the blog URL you want to scrape data from. Then once you already navigated to the target blog URL turn on extraction.In this tutorial,I will use this blog URL bongo5.com  for data extraction.

You can see from the window below I already navigated to www.bongo5.com but extraction switch is still off.

Turn extraction switch “ON” as shown in the window below and move to the next step.

Step 4:Training the “columns” or specifying the data we want to scrape

In this step,I will specify exactly what kind of data I want to scrape from the blog.On import.io app specifying the data you want to scrape is referred to as “training the columns”.Columns represent the data set I want to scrape(post titles,authors’ names and posts URLs).

In order to understand this step, you need to know the difference between a blog page and a blog post.A page might have a single post or multiple posts depending on the blog configuration.

A blog might have several blog posts,even hundreds or thousands of posts.But I will take only one session to train the “extractor” about the data I want to extract.I will do so by using an import.io visual highlighter.Once the data extraction is turned on the-the highlighter will appear by default.

I will do the training session for a single post in a single blog page with multiple posts then the extractor will extract data automatically for the remaining posts on the “same” blog page.
Step 4a:Creating “post_title” column

I will start by renaming “my_column” into the name of the data I want to scrape.Our goal in this tutorial is to scrape the blog posts titles,posts URLs,authors names and get social statistics later so I will create columns for posts titles,posts URLs,authors names.Later on, I will teach you how to get social statistics for the post URLs.

After editing “my_column” into “post_title” then point the mouse cursor over to any of the Posts title on the same blog page and the visual highlighter will automatically appear.Using the highlighter I can select the data I want to extract.

You can see below I selected one of the blog post titles on the page.The rectangular box with orange border is the visual highlighter.

The app will ask you how is the data arranged on the page.Since I have more than one post in a single page then you have rows of repeating data.This blog is having 25 posts per page.So you will select “many rows”.Sometimes you might have a single post on a page for that case you need to select “Just one row”.

Source: http://nocodewebscraping.com/web-scraping-for-dummies-tutorial-with-import-io-without-coding/

Friday, 5 August 2016

What's difference between web scraping and data mining?

What's difference between web scraping and data mining?

Data mining: automatically searching large stores of data for patterns. How you get the data is irrelevant, only how you analyze it. Data mining involves the use of complex statistical algorithms.

Screen/web scraping is a method for extracting textual characters from screens so that they could be analyzed. Commonly, it is used to extract characters from websites (web scraping), though not exclusively. This method for gathering data is direct, either through looking at websites' html code or visual abstraction techniques.

Web scraping could be a source for data mining but it doesn't have to be because your data may not come from the web.

Data Mining can take any source of data and if that process requires data available from the public web then web scraping could be one of the methods to get such data.
You can also perform web scraping. without mining it later.

The reality is that a lot of data today IS on the web and a lot of data mining does use web related data.

Web scraping is getting data from web. Data mining is getting knowledge from data.

Source: https://www.quora.com/Whats-difference-between-web-scraping-and-data-mining

Tuesday, 2 August 2016

Tips for scraping business directories

Tips for scraping business directories

Are you looking to scrape business directories to generate leads?

Here are a few tips for scraping business directories.

Web scraping is not rocket science. But there are good and bad and worst ways of doing it.

Generating sales qualified leads is always a headache. The old school ways are to buy a list from sites like Data.com. But they are quite expensive.

Scraping business directories can help generate sales qualified leads. The following tips can help you scrape data from business directories efficiently.

1) Choose a good framework to write the web scrapers. This can help save a lot of time and trouble. Python Scrapy is our favourite, but there are other non-pythonic frameworks too.

2) The business directories might be having anti-scraping mechanisms. You have to use IP rotating services to do the scrape. Using IP rotating services, crawl with multiple changing IP addresses which can cover your tracks.

3) Some sites really don’t want you to scrape and they will block the bot. In these cases, you may need to disguise your web scraper as a human being. Browser automation tools like selenium can help you do this.

4) Web sites will update their data quite often. The scraper bot should be able to update the data according to the changes. This is a hard task and you need professional services to do that.

One of the easiest ways to generate leads is to scrape from business directories and use enrich them. We made Leadintel for lead research and enrichment.

Source: http://blog.datahut.co/tips-for-scraping-business-directories/

Tuesday, 12 July 2016

Web Scraping Best Practices

Extracting data from the World Wide Web has several challenges as more webmasters are working day and night to lower cases of scraping and crawling of their data in order to survive in the competitive world. There are various other problems you may face when web scraping and most of them can be avoided by adapting and implementing certain web scraping best practices as discussed in this article.

Have knowledge of the scraping tools

Acquiring adequate knowledge of hurdles that may be encountered during web scraping, you will be able to have a smooth web scraping experience and be on the safe side of the law. Conduct a thorough research on the types of tools you will use for scraping and crawling. Firsthand knowledge on these tools will help you find the data you need without being blocked.

Proper proxy software that acts as the middle party works well when you know how to work around HTTP and HTML protocols. Use tools that can change crawling patterns, URLs and data retrieved even when you are crawling on one domain. This will help you abide to the rules and regulations that come with web scraping activities and escaping any legal issues.

Conduct your scraping activities during off-peak hours

You may opt to extract data during times that less people have access for instance over the weekends, during late night hours, public holidays among others. Visiting a website on several instances to retrieve the same type of data is a waste of bandwidth. It is always advisable to download the entire site content to your computer and thereafter you can access it whenever need arises.

Hide your scrapping activities

There is a thin line between ethical and unethical crawling hence you should completely evade being on the top user list of a particular website. Cover up your track as best as you can by making use of proxy IPs to avoid any legal problems. You may also use multiple IP addresses or VPN services to conceal your scrapping activities and lower chances of landing on a website’s blacklist.

Website owners today are very protective of their data and any other information existing under their unique url. Be keen when going through the terms and conditions indicated by websites as they may consider crawling as an infringement of their privacy. Simple etiquette goes a long way. Your web scraping efforts will be fruitful if the site owner supports the idea of sharing data.

Keep record of your activities

Web scraping involves large amount of data.Due to this you may not always remember each and every piece of information you have acquired, gathering statistics will help you monitor your activities.

Load data in phases

Web scraping demands a lot of patience from you when using the crawlers to get needed information. Take the process in a slow manner by loading data one piece at a time. Several parallel request to the same domain can crush the entire site or retrace the scrapping attempts back to your local machine.

Loading data small bits will save you the hustle of scrapping afresh in case that your activity has been interrupted because you will have already stored part of the data required. You can reduce the loading data on an individual domain through various techniques such as caching pages that you have scrapped to escape redundancy occurrences. Use auto throttling mechanisms to increase the amount of traffic to the website and pause for breaks between requests to prevent getting banned.


Through these few mentioned web scraping best practices you will be able to work around website and gather the data required as per clients’ request without major hurdles along the way. The ultimate goal of every web scraper is to be able to access vital information and at the same time remain on the good side of the law.

Source URl : http://nocodewebscraping.com/web-scraping-best-practices/

Monday, 11 July 2016

How to Avoid the Most Common Traps in Web Scraping?

A lot of industries are successfully using web scraping for creating massive data banks of applicable and actionable data which can be used on every day basis for further business interests as well as offer superior services to the customers. However, web scraping does have its own roadblocks and problems.

Using automated scraping, you could face many common problems. The web scraping spiders or programs present a definite picture to their targeted websites. Then, they use this behavior for making out between the human users as well as web scraping spiders. According to those details, a website can employ a certain web scraping traps for stopping your efforts. Here are some of the most common traps:

How Can You Avoid These Traps?

Some measures, which you can use to make sure that you avoid general web scraping traps include:

• Begin with caching pages, which you already have crawled and make sure that you are not required to load them again.
• Find out if any particular website, which you try to scratch has any particular dislikes towards the web scraping tools.
• Handle scraping in moderate phases as well as take the content required.
• Take things slower and do not overflow the website through many parallel requests, which put strain on the resources.
• Try to minimize the weight on every sole website, which you visit to scrape.
• Use a superior web scraping tool that can save and test data, patterns and URLs.
• Use several IP addresses to scrape efforts or taking benefits of VPN services and proxy servers. It will assist to decrease the dangers of having trapped as well as blacklisted through a website.

Source URL :http://www.3idatascraping.com/category/web-data-scraping

Friday, 8 July 2016

Scraping the Royal Society membership list

To a data scientist any data is fair game, from my interest in the history of science I came across the membership records of the Royal Society from 1660 to 2007 which are available as a single PDF file. I’ve scraped the membership list before: the first time around I wrote a C# application which parsed a plain text file which I had made from the original PDF using an online converting service, looking back at the code it is fiendishly complicated and cluttered by boilerplate code required to build a GUI. ScraperWiki includes a pdftoxml function so I thought I’d see if this would make the process of parsing easier, and compare the ScraperWiki experience more widely with my earlier scraper.

The membership list is laid out quite simply, as shown in the image below, each member (or Fellow) record spans two lines with the member name in the left most column on the first line and information on their birth date and the day they died, the class of their Fellowship and their election date on the second line.

Later in the document we find that information on the Presidents of the Royal Society is found on the same line as the Fellow name and that Royal Patrons are formatted a little differently. There are also alias records where the second line points to the primary record for the name on the first line.

pdftoxml converts a PDF into an xml file, wherein each piece of text is located on the page using spatial coordinates, an individual line looks like this:

<text top="243" left="135" width="221" height="14" font="2">Abbot, Charles, 1st Baron Colchester </text>

This makes parsing columnar data straightforward you simply need to select elements with particular values of the “left” attribute. It turns out that the columns are not in exactly the same positions throughout the whole document, which appears to have been constructed by tacking together the membership list A-J with that of K-Z, but this can easily be resolved by accepting a small range of positions for each column.

Attempting to automatically parse all 395 pages of the document reveals some transcription errors: one Fellow was apparently elected on 16th March 197 – a bit of Googling reveals that the real date is 16th March 1978. Another fellow is classed as a “Felllow”, and whilst most of the dates of birth and death are separated by a dash some are separated by an en dash which as far as the code is concerned is something completely different and so on. In my earlier iteration I missed some of these quirks or fixed them by editing the converted text file. These variations suggest that the source document was typed manually rather than being output from a pre-existing database. Since I couldn’t edit the source document I was obliged to code around these quirks.

ScraperWiki helpfully makes putting data into a SQLite database the simplest option for a scraper. My handling of dates in this version of the scraper is a little unsatisfactory: presidential terms are described in terms of a start and end year but are rendered 1st January of those years in the database. Furthermore, in historical documents dates may not be known accurately so someone may have a birth date described as “circa 1782? or “c 1782?, even more vaguely they may be described as having “flourished 1663-1778? or “fl. 1663-1778?. Python’s default datetime module does not capture this subtlety and if it did the database used to store dates would need to support it too to be useful – I’ve addressed this by storing the original life span data as text so that it can be analysed should the need arise. Storing dates as proper dates in the database, rather than text strings means we can query the database using date based queries.

ScraperWiki provides an API to my dataset so that I can query it using SQL, and since it is public anyone else can do this too. So, for example, it’s easy to write queries that tell you the the database contains 8019 Fellows, 56 Presidents, 387 born before 1700, 3657 with no birth date, 2360 with no death date, 204 “flourished”, 450 have birth dates “circa” some year.

I can count the number of classes of fellows:

Select distinct class,count(*) from `RoyalSocietyFellows` group by class

Make a table of all of the Presidents of the Royal Society

select * from `RoyalSocietyFellows` where StartPresident not null order by StartPresident desc

…and so on. These illustrations just use the ScraperWiki htmltable export option to display the data as a table but equally I could use similar queries to pull data into a visualisation.

Comparing this to my earlier experience, the benefits of using ScraperWiki are:

•    Nice traceable code to provide a provenance for the dataset;

•    Access to the pdftoxml library;

•    Strong encouragement to “do the right thing” and put the data into a database;

•    Publication of the data;

•    A simple API giving access to the data for reuse by all.

My next target for ScraperWiki may well be the membership lists for the French Academie des Sciences, a task which proved too complex for a simple plain text scraper…

Sources URL :                             http://yellowpagesdatascraping.blogspot.in/2015/06/scraping-royal-society-membership-list.html

Thursday, 30 June 2016

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:
• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection
Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:
• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Source URL :    http://ezinearticles.com/?Web-Data-Extraction-Services-and-Data-Collection-Form-Website-Pages&id=4860417

Thursday, 12 May 2016

Web scraping in under 60 seconds: the magic of import.io

This post was written by Rubén Moya, School of Data fellow in Mexico, and originally posted on Escuela de Datos.

Import.io is a very powerful and easy-to-use tool for data extraction that has the aim of getting data from any website in a structured way.
It is meant for non-programmers that need data (and for programmers who don’t want to overcomplicate their lives).

I almost forgot!! Apart from everything, it is also a free tool (o_O)

The purpose of this post is to teach you how to scrape a website and make a dataset and/or API in under 60 seconds. Are you ready?

It’s very simple. You just have to go to http://magic.import.io; post the URL of the site you want to scrape, and push the “GET DATA” button.
Yes! It is that simple! No plugins, downloads, previous knowledge or registration are necessary. You can do this from any browser; it even
works on tablets and smartphones.

For example: if we want to have a table with the information on all items related to Chewbacca on MercadoLibre (a Latin American version
of eBay), we just need to go to that site and make a search – then copy and paste the link (http://listado.mercadolibre.com.mx/chewbacca)
on Import.io, and push the “GET DATA” button.

You’ll notice that now you have all the information on a table, and all you need to do is remove the columns you don’t need. To do this, just
place the mouse pointer on top of the column you want to delete, and an “X” will appear.

Finally, it’s enough for you to click on “download” to get it in a csv file.
In our example, we have 373 pages with 48 articles each. So this option will be very useful for us.

Good news for those of us who are a bit more technically-oriented! There is a button that says “GET API” and this one is good to, well,
generate an API that will update the data on each request. For this you need to create an account (which is also free of cost).

As you saw, we can scrape any website in under 60 seconds, even if it includes tons of results pages. This truly is magic, no? For more
complex things that require logins, entering subwebs, automatized searches, et cetera, there is downloadable import.io software… But I’ll
explain that in a different post.

Source : http://schoolofdata.org/2014/12/09/web-scraping-in-under-60-seconds-the-magic-of-import-io/